山東冠熙環保設備有限公司
主營產品: 通風機
中壓風機-環保除塵風機-低壓風機
價格
訂貨量(件)
¥2999.00
≥1
店鋪主推品 熱銷潛力款
莸莻莺莶获莾莵莹莶莼莹
將風機模型導入ICEM 進行網格劃分,網格劃分過程中對離心風機關鍵部位要進行加密處理,如葉輪、集流器、蝸舌、進氣箱的轉角處等。對風機的進口與出口適當延長,以保證計算的穩定性。考慮到離心風機結構的復雜且不規則性,本文采用非結構四面體網格進行劃分,其中無進氣箱的離心風機網格數量約370萬,網格質量為0.3以上;帶進氣箱的離心風機網格數量為380萬,網格質量為0.3以上。
風機采用標準k-?模型,壁面函數為Scalable,數值計算方法為高階求解格式,求解格式為一階格式。由于通風機轉速低,馬赫數小,可認為氣流為不可壓縮定常流動。進口給定質量流量,出口給定靜壓,壁面條件為無滑移邊界,轉速為1 480r/min,并將流動區域分為靜止域與旋轉域,兩者通過Interface連接,連接模型為普通連接,坐標變換為轉子算法,網格連接方式為GGI。本文所研究的某離心風機葉輪有均布的16 個前向的大小葉片,其內部流場較為復雜,為了揭示風機內的流場特性,對風機進行全三維數值模擬。先單獨分析了進氣箱內部流場特性,然后對進氣箱與風機進行一體化分析,研究進氣箱對離心風機性能的影響。
風機葉片吸力側形成的低能流積聚的“尾跡區”,形成“射流-尾流”結構。加進氣箱后,風機葉輪尾緣處的“尾跡-射流”更加的嚴重,風機模型尾跡區占了比較大的空間,減少了風機流道有效面積。在小流量區,風機內部的流場分布發生偏心現象(C 處),葉輪流道E 側,氣體比較充實,葉輪流道F 側氣體分布較差,與原始風機內部流場分布相比,其風機葉輪流道的充盈性差。離心風機的效率曲線如圖6,無進氣箱情況下在流量為2.82kg/s,壓力為3 106.23Pa 時,達到較率68.64%;加進氣箱后在流量為1.68kg/s,壓力為2 775.54Pa,達到較率59.45%,通過與原始風機對比可知,加進氣箱后其較率降低8.19%。同樣由圖6 效率曲線對比圖可知,加進氣箱后風機整體效率降低,與原始風機相比其區域比較窄,縮短了工作區域,且加進氣箱后較優工況點向小流量區偏移。加進氣箱后,離心風機的全開流量降低,與無進氣箱相比,流量降低了16.9%。由圖7 可知,加進氣箱不僅降低了風機的全開流量,其全壓也有所減少。風機性能測試采用C 型試驗裝置對帶進氣箱的離心風機進行了性能測試,測試標準按GB/T 1236-2017《工業通風機用標準化風道進行性能實驗》執行。
本文以風機為研究對象,對4 種組合方式的消聲蝸殼進行了試驗測量,研究了每一種組合的降噪效果及對風機氣動性能的影響。試驗在符合ISO3745 標準的半消聲室中進行,其四周墻壁及屋頂均裝有消聲尖劈,消聲室截止頻率100 Hz,本底噪聲為26 dB( A) 。試驗裝置和測試系統按照國家標準GB/T1236-2000《工業通風機用標準化風道進行性能試驗》和GB/T2888-91《風機和羅茨鼓風機噪聲測量方法》的要求設計、制造、測試。風機進氣口端連接符合GB/T 1236 規定的風機性能試驗進氣試驗裝置。使用智能壓力風速風量儀測出PL3 位置的靜壓和PL5 處的流量壓差,然后再根據其他測量的數據算出風機全壓和靜壓試驗裝置。
試驗采用進口堵片方式調節流量,從大流量至小流量共選取8 個工況點,分別測試每個工況點的風機流量、壓力、功耗和噪聲。后計算風機標況下流量、全壓、全壓效率、總A 聲級。本試驗風機的結構簡圖,在風機蝸板和前后蓋板上可分別固定穿孔鋼板,穿孔板與蝸殼本體之間形成10 mm 的空腔,空腔內填充超細玻璃棉,形成消聲蝸殼。以此形成4 種消聲蝸殼組合: A 組合,周向蝸板有消聲層;B 組合,蝸殼后蓋板有消聲層; C 組合,周向蝸板和后蓋板有消聲層; D 組合,周向蝸板和前蓋板有消聲層。選用的穿孔板采用板厚1 mm,孔徑6 mm,穿孔率約為22%。各種加裝吸聲結構組合,風機蝸殼內部的通流結構尺寸和原風機一致。