純鎢絲價格-批發-細鎢絲
價格
訂貨量(公斤)
面議
≥1
店鋪主推品 熱銷潛力款
専專将将将專專尋将尃将
在線客服
高純鎢是一種制造集成電路的基本材料。材料形狀可以是箔膜,薄片,靶材,細絲,絕緣線,直棒,圓管,粉末,單晶體等。廣泛用作半導體大規模集成電路的門電路電極材料、布線材料和屏蔽金屬材料。
簡介
微電子技術中大規模集成電路集成度的提高對材料提出了更高要求,傳統的Si基器件已不再適用。高純鎢或超純鎢(5N或6N)由于具有高電子遷移抗力、高溫穩定性以及非常高的電子發射系數,廣泛用作半導體大規模集成電路的門電路電極材料、布線材料和屏蔽金屬材料。高純金屬鎢靶是制造集成電路的基本材料之一,其市場前景與集成電路發展密切相關;若鎢靶純度不高,將造成大規模集成電路的作業可靠性降低,甚至產生泄電現象。采用高純鎢,可減少甚至消除有害雜質的影響,提高終端產品的性能。
性質
高純鎢的純度達到99.99%記為5N和6N的純鎢。它的各種雜質元素含量應在(0.1~1000)×10-12之間,對于某些雜質元素的含量,如堿金屬元素、重金屬元素和氣體元素等還分別有特殊的要求。
制備
高純鎢的制備方法可分為粉末冶金法、熔煉法和化學氣相沉積法。
粉末冶金法
粉末冶金法是指鎢粉經過成形后,加熱到其熔點下的某個溫度,通過物質遷移完成致密化的過程,最終可得到鎢坯或某些形狀簡單的鎢制品。
熔煉法
熔煉法是指將鎢原料加熱到其熔點以上形成液相,去除雜質后再冷卻凝固實現致密化的過程,根據所采用的手段不同,具體方法有真空自耗電弧熔煉法、電子束熔煉法和等離子束熔煉法等。
化學氣相沉積法
化學氣相沉積是指以鎢化合物氣體(一般為WF6)為鎢源,在一定溫度下被H2還原,將生成的鎢沉積在特定的基底上,沉積完成后去除基底材料獲得致密鎢坯(或者制品)的過程。
用途
高純鎢及其硅化物用于超大規模集成電路作為電阻層、擴散阻擋層等以及在金屬氧化物半導體型晶體管中作為門材料及連接材料等 。
高純鎢中痕量雜質的檢測
高純鎢中痕量元素的測定是評價高純鎢性能的重要標準,降低痕量元素的測定下限和增加痕量元素的測定數目,提高測量的精確度和靈敏度是高純鎢檢測工藝的主要攻關方向。高純金屬中痕量元素的檢測常用手段有光譜分析、質譜分析、中子分析等。隨著材料純度的提高,傳統的光譜分析以及中子分析所測元素的量及分析靈敏度均不能滿足6N 鎢粉的分析要求,而質譜分析在高純鎢中痕量雜質的檢測方面發揮著越來越重要的作用。
電感耦合等離子質譜法( ICP-MS) 測定方法是新一代痕量分析技術,具有檢測限低、能進行多元素同時分析等優點,但仍存在基體效應的干擾問題。
北京有色金屬研究院采取預分離富集技術,借助離子色譜分離基體,降低基體對雜質檢測的干擾,利用膜去溶裝置吹掃溶劑有效地降低了ICP-MS檢測過程中氧化物的產率,精確地測定了6N 鎢粉中的雜質。
與ICP-MS 法相比,輝光放電質譜法(GDMS)具有可對固體樣品直接測量、樣品制備簡單的優點,同時避免了ICP-MS法溶樣過程中難溶元素的損失和污染的引入,可更有效地應用于6N及以上高純鎢的全面分析檢測。隨著儀器靈敏度、分辨率、穩定性等的進一步提高,GD-MS作為對超純樣品直接分析的質譜方法將得到更廣泛的應用 。
研究與展望
隨微電子工業和光電技術的發展,高純鎢的用途日益增加,其中5N及以上高純鎢年消耗量為500t,預計到2020年其消耗量將增加到1200t,需求量日益增加,同時對W的純度也將提出更高要求。由于W產品高純度化和新功能化的發展跟不上電子元器件的需要,高純鎢及其相關產品質量較國外同類產品仍有一定的差距,許多相關技術尚處于實驗室階段,沒有形成規模生產能力。許多公司仍是采用傳統加工工藝生產,依靠價格取勝的代加工型企業。高純鎢的制備工藝繁冗,同時各種提純方法在脫除不同雜質的效果上存在很大差異;國內在高純鎢的精煉工藝方面,仍只是采用簡單的真空脫氣處理除去間隙雜質,產品純度受到一定的限制。而熔煉法由于溫度高,無污染,提純效果好等特點,在提純難熔金屬方面具有極大的優勢;但其原料純度要求較高,成本高,工藝費時。因此,如何將各個工藝有機結合成功制備出高純鎢成為研究熱點與難點。我國是W資源大國,應充分發揮其產業優勢。微電子和核技術的發展勢不可擋,高純鎢是其應用的重要原料;如何改進提純工藝,制備出性能更加優異的高純鎢及其相關產品,實現其工業化是今后的發展方向。